Deep Learning Predicts Stress–Strain Relations of Granular Materials Based on Triaxial Testing Data

نویسندگان

چکیده

This study presents an AI-based constitutive modelling framework wherein the prediction model directly learns from triaxial testing data by combining discrete element (DEM) and deep learning. A learning strategy is proposed based on generally accepted frame-indifference assumption in constructing material models. The low-dimensional principal stress-strain sequence pairs, measured of testing, are used to train recurrent neural networks, then predicted stress augmented other high-dimensional or general tensor via coordinate transformation. Through detailed hyperparameter investigations, it found that long short-term memory (LSTM) gated unit (GRU) networks have similar performance problems, both satisfactorily predict responses granular materials subjected a given unseen strain path. Furthermore, unique merits ongoing challenges data-driven models for discussed.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring the micro - mechanics of triaxial instability in granular materials

14 The instability of granular materials due to water infiltration under fully drained conditions has been 15 previously considered in experimental studies. While laboratory experiments can provide macro-scale 16 insight into drained instability, the micro-mechanics under such conditions are yet to be explored. 17 This study has employed the Discrete Element Method (DEM) to simulate constant sh...

متن کامل

behavior of rockfill materials in triaxial compression testing

this paper studies thoroughly and deeply the results of about one hundred triaxial compression tests on thirty types of rockfill materials. the materials are categorized in accordance with their particles shape (angular / rounded) and gradation characteristics. the main tool of the study is the hyperbolic model developed by duncan and chang. the focus of the study is on the variations of deform...

متن کامل

the effect of lexically based language teaching (lblt) on vocabulary learning among iranian pre-university students

هدف پژوهش حاضر بررسی تاثیر روش تدریس واژگانی (واژه-محور) بر یادگیری لغات در بین دانش آموزان دوره پیش دانشگاهی است. بدین منظور دو گروه از دانش آموزان دوره پیش دانشگاهی (شصت نفر) که در سال تحصیلی 1389 در شهرستان نور آباد استان لرستان مشغول به تحصیل بودند انتخاب شده و به صورت قراردادی گروه آزمایش و گواه در نظر گرفته شدند. در ابتدا به منظور اطمینان یافتن از میزان همگن بودن دو گروه از دانش واژگان، آ...

15 صفحه اول

Testing Exponentiality Based on Renyi Entropy of Transformed Data

In this paper, we introduce new tests for exponentiality based on estimators of Renyi entropy of a continuous random variable. We first consider two transformations of the observations which turn the test of exponentiality into one of uniformity and use a corresponding test based on Renyi entropy. Critical values of the test statistics are computed by Monte Carlo simulations. Then, we compare p...

متن کامل

Constitutive relations for cohesionless frictional granular materials

Based on the micro-mechanical model recently developed by Nemat-Nasser S. (J. Mech. Phys. Solids 48 (2000) 1541), a three-dimensional continuum mechanics model is presented for the deformation of granular materials which carry the applied load through frictional contacts. The model incorporates the anisotropy (or fabric) which develops as a frictional granular mass is deformed in shear, and inc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Cmes-computer Modeling in Engineering & Sciences

سال: 2021

ISSN: ['1526-1492', '1526-1506']

DOI: https://doi.org/10.32604/cmes.2021.016172